The Continuum of Metabolic Stress According to the Gas Model of Alzheimer’s Disease

نویسنده

  • Pierre A. Denis
چکیده

The present article focuses on the model metabolic stress in AD. This novel model proposes that nitrogen nanobubbles, having invaded the brain interstitial fluid from the blood through glucose transporter-1 (GLUT-1), cause the pressure to increase in the close surroundings, before being embedded in amyloid-β fibrils in the form of cerebral amyloid angiopathy that fixes the pollutant. Following the huge increase in the surrounding pressure, molecular oxygen, the regular form of oxygen in a low PO2 solute, gather into oxygen nanobubbles, leading to various normal responses, albeit damaging. Therefore, nanobubbles trigger the NADPH oxidase-NO antibubble biomachinery that produces superoxide and peroxynitrite. The high NADPH/NADP+ turnover is supported by the pentose phosphate pathway. Oxygen nanobubbles in mitochondria could explain the impairment of complexes I and IV. The amyloid percolation well model might resolve the issue of the coimmunoprecipitation of Aβ with the latter complexes, Aβ stabilizing oxygen bubbles, as it might stabilize nitrogen bubbles in the ISF. The permeabilization of the mitochondrial membrane by unspecific pores fixes the overpressure on the mitochondria. The bubble-induced crowding of the respiratory chains causes energy depletion due to the disruption of oxidative phosphorylation, leading to the irreversible injury of respiration, also known as Warburg effect. The main consequence is a deficit in the cholinergic system. Last, the peroxynitrite/CO2 system is deciphered as a CO2 antibubble buffer, rescuing the impaired carbonic anhydrase in AD. Sometimes, CO2 is not released from peroxynitrite, and then produces nitrite anions and carbonyl radicals after intermediate reactions. These respectively lead to the nitrotyrosination and carbonylation of numerous proteins but hold the cells free from a CO2 bubble-induced disruption of the cytoplasmic and the mitochondrial membranes. The AD Gas Model paves the way to new approaches to address the pathophysiology of the most devastating brain disease in human beings. actually indestructible for human beings, cannot escape from the ISF anymore. They would exert a huge and deleterious pressure against cellular components, especially in microglia and in astrocytes. They could enhance the existing cell oxygen anisotropy, which might enhance the natural bubble nucleation of 2 O − 2O2 in cells or in mitochondria [1].” The classic problem of oxygen toxicity states that superoxide radical ion 2 O − is one key understanding [2], superoxide being scavenged in the form of peroxynitrite. Peroxynitrite appears as a pivot molecule among all Reactive Oxygen Species (ROS). An extensive literature exists on ROS formation in AD, especially those released by microglia [3], the resident macrophages in the brain. However, the literature on the subject does not deal with bubble occurrence when gases found in cells are O2, NO, 2 O − and CO2. Indeed, I believe that the oxygen and also the CO2 toxicity depend mainly on the ability of any gas to generate bubbles in a solute, and not only on their respective chemical reactivities. The Results section lists a few major pathological hallmarks regarding the metabolic stress in AD, such as the ROS formation and nitrosative stress, the main mitochondrial abnormalities, and the shift Citation: Denis PA (2014) The Continuum of Metabolic Stress According to the Gas Model of Alzheimer’s Disease. J Alzheimers Dis Parkinsonism 4: 149. doi: 10.4172/2161-0460.1000149

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ghrelin on serum metabolites in Alzheimer’s disease model rats; a metabolomics studies based on 1H-NMR technique

Objective(s): Alzheimer’s disease (AD) is dysfunction of the central nervous system and as a neurodegenerative disease. The objective of this work is to investigate metabolic profiling in the serum of animal models of AD compared to healthy controls and then to peruse the role of ghrelin as a therapeutic approach for the AD.Materials and Methods: Nuclear magnetic resonance (NMR) technique was u...

متن کامل

The Highlighted Roles of Metabolic and Cellular Response to Stress Pathways Engaged in Circulating hsa-miR-494-3p and hsa-miR-661 in Alzheimer’s Disease

Background: Among different roles of miRNAs in AD pathogenesis, hsa-miR-494-3p and hsa-miR-661 functions are poorly understood. Methods: To obtain the gene targets, gene networks, gene ontology, and enrichment analysis of the two miRNAs, some web servers were utilized. Furthermore, the expressions of these miRNAs were analyzed by qRT-PCR in 36 blood sera, including 18 Alzheimer’s patients and 1...

متن کامل

Rosmarinic acid mitigates learning and memory disturbances in amyloid β(25–35)-induced model of Alzheimer’s disease in rat

Abstract Background and Objective: Alzheimer’s disease (AD) is a weakening neurodegenerative disorder typified by increased b-amyloid (Ab) deposition and neuronal dysfunction causing to impaired learning and memory. Among proposed risk factors, induced oxidative stress is a main cause for incidence of the disease. The aim of this study was to determine the effects of the rosmarinic acid on lear...

متن کامل

Application of magnetic resonance spectroscopy for evaluating metabolic alteration in anterior cingulate cortex in Alzheimer's disease

Introduction: Alzheimer’s disease (AD) is the most common cause of dementia worldwide. Mild cognitive impairment (MCI) is often the prodromal stage to AD. Most patients with MCI harbor the pathologic changes of AD and demonstrate transition to AD at a rate of 10–15% per year. Accumulating evidence indicates that the asymmetry changes of left and right brain have happened in the early stage of A...

متن کامل

New Insights into the Effect of Diabetes and Obesity in Alzheimer’s Disease

Abstract Alzheimer’s disease (AD) is the most common cause of dementia in elderly people. The prevalence of Alzheimer diseases is increasing in the world due to population aging. Metabolic disease such as diabetes and obesity play important role in Alzheimer disease. Hyperglycemia can play important role in brain damage. It causes cognitive impairments, functional and structural alterations in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014